
ECE 604, Lecture 19

November 6, 2018

In this lecture, we will cover the following topics:

• Hollow Waveguide:

– TE Case

– TM Case

• Rectangular Waveguides:

– TE Modes

– TM Modes

• Circular Waveguides

– TE Modes

– TM Modes

Additional Reading:

• Sections 6.6, 6.8 of Ramo, Whinnery, and Van Duzer.

• Lecture Notes 11, Prof. Dan Jiao.

• Section 2.5, J.A. Kong, Electromagnetic Wave Theory.

• Lecture 18, ECE 350X.

You should be able to do the homework by reading the lecture notes alone.
Additional reading is for references.

Printed on November 13, 2018 at 15 : 12: W.C. Chew and D. Jiao.
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1 Hollow Waveguides

Hollow waveguides are useful for high-power microwaves. Air has a higher break-
down voltage compared to most materials, and hence, could be a good medium
for propagating high power microwave. Also, they are sufficiently shielded from
the rest of the world so that interference from other sources is minimized. Also,
for radio astronomy, they can provide a low-noise system immune to interfer-
ence. Air generally has less loss than materials, and loss is often the source of
thermal noise. A low loss waveguide is also a low noise waveguide.

Many waveguide problems can be solved in closed form. An example is the
coaxial waveguide previously discussed. But there are many other waveguide
problems that have closed form solutions. Closed form solutions to Laplace and
Helmholtz equations are obtained by the separation of variables method. The
separation of variables method works only for separable coordinate systems.
There are 11 separable coordinates for Helmholtz equations, but 13 for Laplace
equation. Some examples of separable coordinate systems are cartesian, cylin-
drical, and spherical coordinates. But these three coordinates are about all we
need to know for solving many engineering problems. More complicated cases
are often handled with numerical methods.

When a waveguide has a center conductor or two conductors like a coaxial
cable, it can support a TEM wave where both the electric field and the magnetic
field are orthogonal to the direction of propagation. The uniform plane wave is
a TEM wave, for instance.

However, when the waveguide is hollow or is filled completely with a homo-
geneous medium, it can only support a TEz or TMz wave like the case of a
layered medium. For a TEz wave (or TE wave), Ez = 0, Hz 6= 0 while for a
TMz wave (or TM wave), Hz = 0, Ez 6= 0. These classes of problems can be
decomposed into two scalar problems like the layerd medium case, by using the
pilot potential method.

1.1 TE Case (Ez = 0, Hz 6= 0)

In this case, the field inside the waveguide is TE to z. We can write the E field
as

E(r) = ∇× ẑΨh(r) (1.1)

Equation (1.1) will guarantee that Ez = 0 due to its construction. Here, Ψh(r)
is a scalar potential and ẑ is the pilot vector.1

The waveguide is assumed source free and filled with a lossless, homogeneous
material. Eq. (??) also satisfies the source-free condition since ∇ ·E = 0. And
hence, from Maxwell’s equations, it follows that

(∇2 + β2)E(r) = 0 (1.2)

1It “pilots” the field so that it is transverse to z.
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where β2 = ω2µε. Substituting (1.1) into (1.2), we get

(∇2 + β2)∇× ẑΨh(r) = 0 (1.3)

In the above, we assume that ∇2∇× ẑΨ = ∇× ẑ(∇2Ψ), or that these operators
commute.2 Then it follows that

∇× ẑ(∇2 + β2)Ψh(r) = 0 (1.4)

Thus, if

(∇2 + β2)Ψh(r) = 0 (1.5)

then (1.4) is satisfied, and so is (1.2). Hence, the E field constructed with (1.1),
where Ψh(r) satisfies (1.5) satisfies Maxwell’s equations.

Figure 1:

Next, we look at the boundary condition for Ψh(r). The boundary condition
for E is that n̂×E = 0 on C, the wall of the waveguide. But from (1.1), using
the back-of-the-cab (BOTC) formula,

n̂×E = n̂× (∇× ẑΨh) = −n̂ · ∇Ψh = 0 (1.6)

2This is a mathematical parlance, and a commutator is defined to be [A,B] = AB − BA
for two operators A and B. If these two operators commute, then [A,B] = 0.
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In applying the BOTC formula, one has to be mindful that ∇ operates on a
function, and the function Ψh is always placed to the right of the ∇ operator.

In the above n̂·∇ = n̂·∇s where∇s = x̂ ∂
∂x+ŷ ∂

∂y since n̂ has no z component.

The boundary condition (1.6) becomes

n̂ · ∇sΨn = ∂nΨn = 0 on C (1.7)

which is also known as the homogeneous Neumann boundary condition.
Furthermore, in a waveguide, just as in a transmission line case, we are

looking for traveling solutions of the form exp(∓jβzz) for (1.5), or that

Ψh(r) = Ψhs(rs)e
∓jβzz (1.8)

where rs = x̂x + ŷy, or in short, Ψhs(rs) = Ψhs(x, y). With this assumption,
∂2

∂z2 → −βz
2, and (1.5) becomes even simpler, namely,

(∇s2 + β2 − βz2)Ψns(rs) = (∇s2 + β2
s )Ψns(rs) = 0 , ∂nΨns(rs) = 0, on C

(1.9)

where β2
s = β2−β2

z . The above is a boundary value problem for a 2D waveguide
problem. The above 2D wave equation is also known as the reduced wave
equation.

1.2 TM Case (Ez 6= 0, Hz = 0)

Repeating similar treatment for TM waves, the TM magnetic field is

H = ∇× ẑΨe(r) (1.10)

where

(∇2 + β2)Ψe(r) = 0 (1.11)

The corresponding E field is obtained by taking the curl of the magnetic field
in (1.10), and thus the E field is proportional to

E ∼ ∇×∇× ẑΨe(r) = ∇∇ · (ẑΨe)−∇2ẑΨe = ∇ ∂

∂z
Ψe + ẑβ2Ψe (1.12)

Taking the z component of the above, we get

Ez ∼
∂2

∂z2
Ψe + β2Ψe (1.13)

Assuming that

Ψe ∼ e∓jβz
z

(1.14)

then in (1.13), ∂2/∂z2 → −β2
z , and

Ez ∼ (β2 − βz)Ψe (1.15)
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Therefore, if

Ψe(r) = 0 on C, (1.16)

then,

Ez(r) = 0 on C (1.17)

One can further show from (1.12) that the homogeneous Dirichlet boundary con-
dition also implies that the other components of tangential E are zero, namely
n̂×E = 0 on the waveguide wall C.

Thus, with some manipulation, the boundary value problem related to equa-
tion (1.11) reduces to a simpler 2D problem, i.e.,

(∇s2 + β2
s )Ψes(rs) = 0 (1.18)

Ψes(rs) = 0, rs on C (1.19)

the homogenous Dirichlet boundary condition where we have assumed that

Ψe(r) = Ψes(rs)e
∓jβzz (1.20)

We can solve some simple waveguides as illustrations.

2 Rectangular Waveguides

Rectangular waveguides are among the simplest waveguides to analyze because
closed form solutions exist in cartesian coordinates. One can imagine traveling
waves in the xy directions bouncing off the walls of the waveguide causing
standing waves to exist inside the waveguide.

It turns out that not all electromagnetic waves can be guided by a hollow
waveguide. Only when the wavelength short enough, or the frequency high
enough that an electromagnetic wave can be guided by a waveguide.

2.1 TE Modes (H Mode)

The scalar potential Ψhs(rs) satisfies

(∇s2 + βs
2)Ψhs(rs) = 0,

∂

∂n
Ψhs(rs) = 0 on C (2.1)

where βs
2 = β2 − βz2. A solution for Ψhs(x, y) is then

Ψhs(x, y) = A cos(βxx) cos(βyy) (2.2)

where βx
2 +β2

y = β2
s . One can see that the above is the representation of stand-

ing waves in the xy directions. It is quite clear that Ψhs(x, y) satisfies equation
(2.1). Furthermore, cosine functions, rather than sine functions are chosen that
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that the above satisfies the homogenous Neumann boundary condition at x = 0,
and y = 0 surfaces.

Figure 2:

To further satisfy the boundary condition at x = a, and y = b surfaces, it is
necessary that the boundary condition for eq. (1.7) is satisfied or that

∂xΨhs(x, y)|x=a ∼ sin(βxa) cos(βyy) = 0, (2.3)

∂yΨhs(x, y)|y=b ∼ cos(βxx) sin(βyb) = 0, (2.4)

The above put constraints on βx and βy, implying that βxa = mπ, βyb = nπ
where m and n are integers. Hence (2.2) becomes

Ψhs(x, y) = A cos
(mπ
a
x
)

cos
(nπ
b
y
)

(2.5)

where

β2
x + β2

y =
(mπ
a

)2
+
(nπ
b

)2
= β2

s = β2 − βz2 (2.6)

The above condition on β2
s is the guidance condition for the mode in the waveg-

uide. Furthermore,

βz =

√
β2 −

(mπ
a

)2
−
(nπ
b

)2
(2.7)

Furthermore, from (2.7), when(mπ
a

)2
+
(nπ
b

)2
> β2 = ω2µε (2.8)

βz becomes pure imaginary and the mode cannot propagate or become evanes-
cent in the z direction.3 For fixed m and n, the frequency at which the above

3We have seen this happening in a plasma medium earlier.
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happens is called the cutoff frequency of the TEmn mode of the waveguide. It
is given by

ω > ωmn,c =
1
√
µε

√(mπ
a

)2
+
(nπ
b

)2
(2.9)

A corresponding cutoff wavelength is then

λ < λmn,c =
2

[
(
m
a

)2
+
(
n
b

)2
]1/2

(2.10)

When m = n = 0, then Ψh(r) is a function independent of x and y. Then
E(r) = ∇× ẑΨh(r) = ∇s × ẑΨh(r) = 0. It turns out the only way for Hz 6= 0
is for H(r) = ẑH0 which is a static field in the waveguide. This is not a very
interesting mode, and thus TE00 propagating mode is assumed not to exist. So
the TEmn modes cannot have both m = n = 0. Thus, the TE10 mode, when
a > b, is the mode with the lowest cutoff frequency or longest cutoff wavelength.

For the TE10 mode, (2.10) reduces to

λ < λ10,c = 2a (2.11)

The above has the nice physical meaning that the wavelength has to be smaller
than 2a in order for the mode to fit into the waveguide. As a mnemonic, we can
think that photons have “sizes”, corresponding to its wavelength. Only when
its wavelength is small enough can the photons go into (or be guided by) the
waveguide. The TE10 mode, when a > b, is also the mode with the lowest cutoff
frequency or longest cutoff wavelength.

It is seen with the above analysis, when the wavelength is short enough, or
frequency is high enough, many modes can be guided. Each of these modes has
a different group and phase velocity. But for most applications, a single guided
mode only is desirable. Hence, the knowledge of the cutoff frequencies of the
fundamental mode (the mode with the lowest cutoff frequency) and the next
higher mode is important. This allows one to pick a frequency window within
which only a single mode can propagate in the waveguide.

2.2 TM Modes (E Modes)

The above exercise can be repeated for the TM mode. The scalar wave function
for the TM modes is

Ψes(x, y) = A sin
(mπ
a
x
)

sin
(nπ
b
y
)

(2.12)

Here, sine functions are chosen for the standing waves, and the chosen values of
βx and βy ensure that the homogeneous Dirichlet boundary condition is satisfied
on the waveguide wall. Neither of the m and n can be zero, lest the field is zero.
In this case, both m > 0, and n > 0 are needed. Thus, the lowest TM mode is
the TM11 mode. The corresponding cutoff frequencies and cutoff wavelengths
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are the same as the TEmn mode. Also, TE11 and TM11 modes have the same
cutoff frequency. These modes are degenerate in this case.

Plots of the fields of different rectangular waveguide modes are shown in
Figure 3. Notice that for higher m’s and n’s, the transverse wavelengths are
getting shorter, implying that βx and βy are getting larger. Hence, only high
frequency fields can generate such modes. Notice also how the electric field and
magnetic field curl around each other. Since ∇ × H = jωεE and ∇ × E =
−jωµH, they do not curl around each other “immediately” but with a phase
delay.

Therefore, the E and H fields do not curl around each other at one location,
but at a displaced location due to the π/2 phase difference. This is shown in
Figure 4.
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Figure 3: Courtesy of Andy Greenwood. Original plots published in Lee, Lee,
and Chuang.

9



Figure 4:

3 Circular Waveguides

Figure 5:

3.1 TE Case

For a circular waveguide, it is best to express the Laplacian operator, ∇s2 =
∇s ·∇s, in cylindrical coordinates. Doing a table lookup, ∇sΨ = ρ̂ ∂

∂ρΨ+ φ̂ 1
ρ
∂
∂φ ,

∇s ·A = 1
ρ
∂
∂ρρAρ + 1

ρ
∂
∂φAφ. Then

(∇s2 + βs
2)Ψhs =

(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ βs

2

)
Ψhs(ρ, φ) = 0 (3.1)

10



Using separation of variables , we let

Ψhs(ρ, φ) = Bn(βsρ)e±jnφ (3.2)

Then ∂2

∂ρ2 → −n
2, and (3.1) becomes an ordinary differential equation which is(

1

ρ

d

dρ
ρ
d

dρ
− n2

ρ2
+ βs

2

)
Bn(βzρ) (3.3)

The above is known as the Bessel equation whose solutions are special func-

tions. These special functions are Jn(x), Nn(x), H
(1)
n (x), and H

(2)
n (x) where

n is the order, and x is the argument.4 Since this is a second order ordinary
differential equation, only two of the four commonly encountered solutions of
Bessel equation are independent. Therefore, they can be expressed then in term
of each other. Their relationships are shown below:

Bessel, Jn(βsρ) =
1

2
[Hn

(1)(βsρ) +Hn
(2)(βsρ)] (3.4)

Neumann, Nn(βsρ) =
1

2j
[Hn

(1)(βsρ)−Hn
(2)(βsρ)] (3.5)

Hankel–First kind, Hn
(1)(βsρ) = Jn(βsρ) + jNn(βsρ) (3.6)

Hankel–second kind, Hn
(2)(βsρ) = Jn(βsρ)− jNn(βsρ) (3.7)

It can be shown that

Hn
(1)(x) ∼

√
2

πx
ejx−j(n+

1
2 )
π
2 , x→∞ (3.8)

Hn
(2)(x) ∼

√
2

πx
e−jx+j(n+

1
2 )
π
2 , x→∞ (3.9)

They correspond to traveling wave solutions when ρ → ∞. Since Jn(x) and
Nn(x) are linear superpositions of these traveling wave solutions, they corre-

spond to standing wave solutions. Moreover, Nn(x), Hn
(1)(x), and Hn

(2)(x)→
∞ when x → 0. Since the field has to be regular when ρ → 0 at the center
of the waveguide, the only viable solution for the waveguide is that Bn(βsρ) =
AJn(βsρ). Thus

Ψhs(ρ, φ) = AJn(βsρ)e±jnφ (3.10)

The homogeneous Neumann boundary condition on the waveguide wall then
translates to

d

dρ
Jn(βsρ) = 0, ρ = a (3.11)

4Some textbooks use Yn(x) for Neumann function.
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Defining Jn
′(x) = d

dxJn(x), the above is the same as

Jn
′(βsa) = 0 (3.12)

Plots of Bessel functions and their derivatives are shown in FIgure 7. The above
are the zeros of the derivative Bessel function and they are tabulated in many
textbooks. The m-th zero of Jn

‘(x) is denoted to be βnm in many books,5 and
some of them are also shown in Figure 8, and hence, the guidance condition for
βs is

βs = βnm/a (3.13)

for the TEnm mode. Using the fact that β2
z +β2

s = β2, the corresponding cutoff
frequency of the TEnm mode is

ωnm,c =
1
√
µε

βnm
a

(3.14)

with the corresponding cutoff wavelength to be

λnm,c =
2π

βnm
a (3.15)

3.2 TM Case

The corresponding boundary value problem for this case is(
1

ρ

∂

∂ρ
ρ
∂

∂ρ
+

1

ρ2
∂2

∂φ2
+ βs

2

)
Ψes(ρ, φ) = 0 (3.16)

The solution is

Ψes(ρ, φ) = AJn(βnρ)e±jnφ (3.17)

with the boundary condition that Jn(βsa) = 0. The zeros of Jn(x) are labeled
in αnm is many textbooks, as well as in Figure 8; and hence, the guidance
condition is that for the TMnm mode

βs =
αnm
a

(3.18)

With βz =
√
β2 − β2

s , the corresponding cutoff frequency is

ωnm,c =
1
√
µε

αnm
a

(3.19)

and the cutoff wavelength to be

λnm,c =
2π

αnm
a (3.20)

It turns out that the lowest mode in a circular waveguide is the TE11 mode. It
is actually a close cousin of the TE10 mode of a rectangular waveguide.

Table in Figure 7 shows the plot of Bessel function Jn(x) and its derivative
J ′n(x).

5Notably, Abramowitz and Stegun, Handbook of Mathematical Functions.
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3.3 An Application of Circular Waveguide

When a real-world waveguide is made, the wall of the metal waveguide is not
made of perfect electric conductor, but with some metal with finite conductivity.
Hence, tangential E is not zero on the wall, and energy can dissipate into the
waveguide wall. It turns out that due to symmetry, the TE01 of a circular
waveguide has the lowest loss of the waveguide modes. Hence, this waveguide
mode is of interest to astronomers who are interested in building loss-loss and
low-noise systems. Figure 6 shows two ways of engineering a circular waveguide
so that the TE01 mode is enhanced: by using a mode filter that discourages
the guidance of other modes, and second, by designing ridged waveguide wall to
discourage the flow of axial current and hence, the propagation of the non-TE01

mode.

Figure 6:

4 Concluding Remarks

We have analyzed some simple structures where closed form solutions are avail-
able. These solutions offer us physical insight into how waves are guided, and
how they are cutoff from guidance. For some simple waveguides, the modes can
be divided into TEM, TE, and TM modes. However, most waveguides are not
simple.

For example, two pieces of metal make a transmission line, and in the case of
a circular coax, a TEM mode can propagate in the waveguide. However, most
two-metal transmission lines do not support a pure TEM mode but a quasi-
TEM mode. When a wave is TEM, it is necessary that the wave propagates
with the phase velocity of the medium. But when a uniform waveguide has
inhomogeneity in between, this is not possible anymore, and only a quasi-TEM
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mode can propagate. The lumped element model of the transmission line is still
a very good model for such a waveguide.

For most inhomogeneously filled waveguides, the modes inside are not cleanly
classed into TE and TM, but with some modes that are the hybrid of TE and
TM modes. Sometimes, the hybrid modes are called EH or HE modes, as in an
optical fiber. Nevertheless, the guidance is via a bouncing wave picture, where
the bouncing waves are reflected off the boundaries of the waveguides. In the
case of an optical fiber or a dielectric waveguide, the reflection is due to total
internal reflection. But in the case of metalic waveguides, the reflection is due
to the metal walls.

But in the transmission line, the guidance is by the exchange of electric and
magnetic stored energy via the capacitance and the inductance of the line. In
the case of many waveguides, the exchange of energy stored is via the space that
stores these energy, like that of a plane wave.

The surface plasmonic waveguide is an exception in that the exchange is
between the electric field stored energy with the kinetic energy stored in the
moving electrons in the plasma instead of magnetic energy stored. Hence, the
dimension of the waveguide can be very small compared to wavelength, and yet
it still works.

Figure 7:
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Figure 8:
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Figure 9: Courtesy of Andy Greenwood. Original plots published in Lee, Lee,
and Chuang.
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